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ABSTRACT

Fourier Ptychography Microscopy enables reconstructing
both intensity and phase high-resolution wide-field images
from multiple captures under varying illumination directions.
The capture process is classically modeled using a neural
network. The reconstructed object is iteratively optimized
by gradient descent so the network output matches the cap-
tures. Although, this process hinges on a precise estimation
of the system geometry. While previous works alternate
object image refinement and LEDs positional misalignment
correction, we show that geometry estimation can be effi-
ciently integrated into the object reconstruction process, so
achieving system self-calibration, and enhancing the quality
of reconstructed images.

Index Terms— Fourier Pytchography Microscopy, Posi-
tion misalignment, Neural Networks

1. INTRODUCTION

Fourier Ptychography Microscopy (FPM) is a technique de-
signed to overcome the space-bandwidth product limitation in
microscopy. FPM was first introduced in 2013 [1] as a means
of capturing high-resolution and wide-field images with both
intensity and phase information from multiple low-resolution
images taken under various illumination directions [2]. FPM
phase image reconstruction relies on the well-established
Gerchberg-Saxton algorithm [3].

In 2018, Jiang et al. [4] proposed to implement the for-
ward process of capturing images from an object as a con-
volutional neural network. Object reconstruction then con-
sists of minimizing the error between the network output and
the actual captures. This allows harnessing the computational
power of modern CNN platforms for FPM. Building upon this
work, Sun et al. [5] introduced a neural network to combine
complex object reconstruction and pupil reconstruction using
TensorFlow [6], thereby integrating pupil reconstruction into
Jiang’s approach.

Zhang et al. [7] in 2021 also use neural networks to cor-
rect the pupil optical distortions and complex object recon-
struction using total variation regularization. In contrast to
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the work by Sun et al. [5], Zhang et al. corrected pupil distor-
tions using a neural network approach that combined Zernike
polynomials.

Low-cost FPM systems can be implemented using stan-
dard microscopes [1]. However, precise positioning of the
LEDs and precise distance between the LED array and the
sample object are often not available. LEDs misalignment af-
fects the estimation of the illumination angle, which degrades
the FPM reconstruction result [2, 8, 9, 10].

Eckert et al. [8] proposed a method for estimating LED
positions, but their method is mostly limited to bright field
images (e.g. with a limited illumination angle). Some au-
thors alternate steps for image reconstruction and misalign-
ment correction, using simulated annealing [10, 11] or parti-
cle swarm optimization [12, 13]. Although, these algorithms
depends on an accurate initialization of hyper-parameters as
well as a limited search space.

Zhang et al. [14] corrected position misalignment by alter-
nating two neural network models, namely one for correcting
misalignments, and the other for reconstructing images and
recovering the pupil.

In 2022, Yang et al. [15] proposed a method that uses a
neural network to perform simultaneous image reconstruc-
tion, misalignment correction, pupil aberration correction,
and focus and intensity correction. However, their neural
network for correcting the positioning of the LEDs was com-
putationally expensive, and they came to perform alignment
outside the neural network by analyzing four of bright field
images.

In this work, we propose an FPM implementation that in-
tegrates image reconstruction, pupil distortion estimation and
correction, and self-calibration of the microscopy’s physical
parameters in a single neural network at a low computational
cost.

2. METHODS

2.1. The principle of FPM

The FPM works by capturing n low-resolution images, where
n is the number of LEDs, and reconstructing a complex image
of the wavefront, in intensity and phase [2]. Mathematically,
the FPM coherent imaging process is described by formula:
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In(x, y) =
∣∣∣F−1

[
F
(
O(x, y) · ei(kn,xx+kn,yy)

)
· P̂ (kx, ky)

]∣∣∣ (1)

where In (x, y) represents the low resolution image cap-
tured with the nth LED in the spatial domain, O(x, y) is the
complex image of the sample object in the spatial domain,
P̂ (kx, ky) represents the pupil function in the frequency
domain. A low resolution image In is originated from a com-
plex object with intensity and phase, shifted in the frequency
plane by kn,x and kn,y (shift due to the LED illumination
angle) multiplied with the P̂ (kx, ky) which represents the
limitations of the pupil in the frequency domain.

We describe the pupil and aberrations of an optical
system using the Coherent Transfer Function (CTF) [2]
CTF (kx, ky) and the Zernike polynomial. The model is
given by:

P̂ (kx, ky) = CTF (kx, ky) · ei
∑N

n=0 anZn(kx,ky) (2)

where the phase term,
∑N

n=0 anZn (kx, ky) is the optical
aberrations in the pupil expressed as a sum of Zernike poly-
nomials Zn (kx, ky) with weights an. This model can be used
to design and optimize optical systems that compensate for
aberrations, leading to improved image quality.

2.2. Neural Network Model

In 2018, Jiang et al. [4] proposed a convolutional neural net-
work that models the Fourier ptychographic forward imaging
process. Following the Fineup approach [16], they update
the complex object O (x, y) to minimize the difference be-
tween the Fourier Transform of the network output and the
Fourier Transform of the low-resolution image captured for
LED n. This way of calculating the error is widely used
[4, 14, 17, 18].

In our approach, we use the same method to jointly
reconstruct the complex object O (x, y), recover the pupil
aberration, and correct global misalignment. The weights of
the neural network are the two real and imaginary planes of
the complex object, ten Zernike polynomial weights, and the
LED position correction parameters.

2.3. Global LEDs position misalignment correction

The illumination direction for each LED is defined by the po-
sition x0 and y0 of the center of the LED array, the rotation θ
of the LED array, the position (xn, yn) of each LED in the ar-
ray, and the distance h between the LED array and the sample
object on the slice. Approximating the light emitted by each
LED as a plane wave, their wave vectors in the object plane
are directed by:

kn,x = −k0
x0 − xn√

(x0 − xn)2 + (y0 − yn)2 + h2

kn,y = −k0
y0 − yn√

(x0 − xn)2 + (y0 − yn)2 + h2

(3)

where k0 = 2π
λ and λ is the light wavelength. While these

positions may be hard to measure precisely, a number of au-
thors [2, 4, 9, 10] have demonstrated the negative impact of
approximate parameters on reconstructed images.

We include the LEDs positioning parameters into the pa-
rameters optimized by the network. LED coordinates are up-
dated to positions (x′

n, y
′
n):

x′
n = xn · cos θ + yn · sin θ · dx +∆x

y′n = −xn · sin θ + yn · cos θ · dy +∆y

h′ = h+∆h

(4)

where dx and dy are the scale factors that adjust the distance
between the LEDs on the matrix, and ∆x and ∆y are the ma-
trix global shifts. Updated positions are then used in Equation
5 to compute the wave vectors.

k′n,x = −k0
x0 − x′

n√
(x0 − x′

n)
2 + (y0 − y′n)

2 + (h+∆h)2

k′n,y = −k0
y0 − y′n√

(x0 − x′
n)

2 + (y0 − y′n)
2 + (h+∆h)2

(5)

Figure 1 shows the architecture of our neural network,
with two inputs: the positions kn,x and kn,y of LED n and
the corresponding low-resolution captures.

To update the LEDs positions by gradient descent, the
resulting pupil disk in the discrete Fourier domain should
be differentiable with respect to the LEDs positions, with a
non-zero gradient near the disk edges. Spatial Transformer
Networks (STN) [19] implement a network layer for image
affine transformations with sub-differential bilinear inter-
polation. Unfortunately, the unneeded generality of affine
transformations makes STN computationally expensive. In-
stead, we developed a custom layer that analytically com-
putes the Zernike polynomials [20] in the translated pupil.
The discontinuity at the pupil disk edge is alleviated using
a sub-differentiable cone frustum that is easily implemented
using a radial Rectified Linear Unit (ReLU) function with
saturation.

In the multiplication layer, we multiply the complex ob-
ject with the pupil after optimizing the positioning parame-
ters. Note that large updates to LED positions will move the
object support in the Fourier plane, possibly leaving frequen-
cies out of the support that will no longer be optimized or
zeroed. To avoid this, we periodically reset the object to zero
and restart object reconstruction with the updated LED posi-
tions.



Fig. 1. Architecture of the neural network is derived from [4] to model the image capture process. The input is the current
estimation of the LEDs positions. For each LED n, these positions are converted to wave vectors (kx, ky) in the Fourier space
calculations using equations 3 and 4. The pupil layer is a linear combination of Zernike polynomials that account for optical
distortions. The pupil is multiplied by the complex object. Then, the complex object is truncated to match the bandwidth
of the low-resolution image. After an inverse Fourier transform, and the LED intensity is corrected using the original low-
resolution image. Ultimately, the error between the low-resolution image and the output image generated by the neural network
is computed and minimized.

In the crop layer we return the complex object to its orig-
inal bandwidth, and then perform the inverse Fourier trans-
form. The average intensity is adjusted to match the average
of low-resolution image is then corrected to match the av-
erage of the corresponding capture, and the output image is
compared with the corresponding capture. The objective of
minimizing the error function involves reducing the disparity
between low-resolution output images produced by the neural
network and the low-resolution images captured by the micro-
scope. This discrepancy can be calculated either in the spa-
tial or in the Fourier domain and with either L1 or L2 norms.
According to Parseval’s equality, the L2 norm yields identi-
cal distances in both domains. Re-using code available from
[21], we found experimentally that the L1 norm in the Fourier
domain resulted in a deeper discrepancy minimum

3. EXPERIMENTS AND RESULTS

We experimented with this approach using captures made by
Zheng et al. 1 on the images from 1951 USAF resolution test
chart (Table 1).

We compared reconstructions achieved by various FPM
implementations. In Fig. 2, we processed Zheng et al.’s cap-
tures on a USAF resolution chart 1 using an FPM system that
they carefully calibrated by hand, ensuring precise LED posi-
tions. Their reconstruction (Fig. 2b) and our neural network

1 https://github.com/SmartImagingLabUConn/Fourier-Ptychography

Properties Data
Incident wavelength 0.63 µm
Numerical Aperture of the objective 0.1
Magnification of the objective 2
Pixel Size 2.69 µm
Height 90.88 mm
LEDs array Size 15x15
Distance between LEDs 4 mm

Table 1. Parameters of the captures made by Zheng et al.1

without position calibration (Fig. 2c) use exactly the same
system position parameters. They achieve similar results in
intensity, but the reconstruction by the neural network appears
to be better resolved in phase. The position corrections out-
put by our proposed self-calibration (Fig. 2e) are small, and
the reconstructed intensity images are close to the previous
results, while the phase image is further refined (Fig. 2d).

We also tested the self-calibration robustness to large po-
sitioning error, by initializing the LED positions parameters
faraway from their actual values: ∆x = ∆y = 4mm, θ =
10◦ and dx = dy = 0.8. Obviously, this drastically degrades
reconstruction results without self-calibration (Fig. 3b). Al-
though, self-calibration can still correctly reconstruct the ob-
ject both in intensity and phase (Fig. 3c) while optimizing the
LEDs positions (Fig. 3d).

Note that, during the LEDs position adjustment, in or-

https://github.com/SmartImagingLabUConn/Fourier-Ptychography
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Fig. 2. Comparison of FPM reconstructions on Zheng et al.’s captures of the USAF resolution chart is shown in the central part
of the figure where we zoomed in. This comparison highlights the differences in resolution and phase detail achieved by our
method versus traditional methods.
(a) Central LED low resolution captured image.
(b) Reconstruction using Zheng et al. Matlab software 1.
(c) Reconstruction by the network architecture without positioning correction.
(d) Reconstruction by the network architecture with the proposed self-calibration of the system geometry.
(e) The calibrated (optimized) wave vectors (kx, ky) for the matrix of LEDs.
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Fig. 3. FPM reconstruction with simulated large positioning error.
(a) Central LED low resolution image captured in intensity (left), reconstruction without positioning correction (2nd column)
and reconstruction with the proposed self-calibration of the system geometry (3rd column).
(b) Wave vectors (kx, ky) for the matrix of LEDs.



der to avoid leaving high frequencies that would not be ad-
justed anymore outside the updated object spectral support,
we chose to reset the complex object periodically and fully
restart the reconstruction from the updated LEDs positions,
resulting in a further enhancement (Fig. 4).

This demonstrates the robustness of self-calibration when
the LED parameters are very poorly initialized, and drasti-
cally alleviates the need for a tedious precise LED position
calibration by hand.

Reconstruction among 
bad initialization 
without erased object

Reconstruction among 
bad initialization with 
erased object

Fig. 4. Periodically resetting the object (right image) allows
better reconstruction than without resetting (left).

Properties Data
Incident wavelength 0.532 µm
Numerical Aperture of the objective 0.1
Magnification of the objective 2
Pixel Size 3.45 µm
Height 58 mm
LEDs array Size 8x8
Distance between LEDs 3 mm

Table 2. Bresser2 microscope capture parameters.

Additionally, we conducted experiments with images we
captured using a Bresser Microscope Biolux 2 adapted for
FPM with an LED matrix and an Arduino Uno. The parame-
ters of the FPM system are listed in Table 2.

We used a sample of a slice of a mouse brain and ini-
tialized the neural network model with an approximate esti-
mation of the LED matrix. The results can be seen in Fig.
5. The first row shows the results of the experiment without
self-calibration. In the second row, with auto-calibration, we
can see that the spectral support has been rotated, reflecting a
rotation in the physical LED matrix. In terms of intensity, the
reconstructions are similar, but in terms of phase, we observe

2 https://www.bresser.de/fr/emeline/BRESSER-Microscope-Biolux-NV-
20x-1280x-avec-Camera-HD-USB.html

a greater aggregation of information. This is evident in the
lower part of the phase figure with optimization, where there
is more detail compared to the upper figure.

Fig. 5. Reconstruction of a slice of mouse brain . We compare
the reconstruction with and without position correction. In the
first column we have the reconstructed image in intensity, in
the second column the reconstructed image in phase and in
the third column the Fourier transform of the reconstructed
image. This slice is a courtesy of Dr. Jérôme Polentes.

In our tests, we used 200 epochs to reconstruct a high-
resolution image with a size of 564 x 564 pixels. Following
Jiang et al. [4], we used the Adam optimizer for the object
and pupil optimization layers. After some trials, we selected
the Adamax optimizer for the positioning correction layers,
utilizing TensorFlow’s [6] multi-optimizer feature. On a Tesla
T4 GPU, each epoch was executed in 2 seconds.

4. DISCUSSION AND CONCLUSION

We have integrated in the framework of a single neural net-
work: image reconstruction by FPM, pupil distortion estima-
tion and correction, and self-calibration of the microscopy’s
physical parameters. The method can achieve a close esti-
mation of the system parameters, which allows significantly
improving object reconstruction. Unlike other methods, we
are able to make corrections of up to one step between the
LEDs, as well as being capable of correcting global errors
in angles between -10 and +10 degrees. This contrasts with
other authors, whose corrections are limited to small errors.
As a further improvement, we could make a position correc-
tion for each LED and thus perform a more refined correction.
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J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[7] Y. Zhang, Y. Liu, S. Jiang, K. Dixit, P. Song, X. Zhang,
X. Ji, and X. Li, “Neural network model assisted fourier
ptychography with zernike aberration recovery and to-
tal variation constraint,” Journal of Biomedical Optics,
vol. 26, no. 3, p. 036502, 2021.

[8] R. Eckert, Z. F. Phillips, and L. Waller, “Efficient illu-
mination angle self-calibration in fourier ptychography,”
Applied Optics, vol. 57, no. 19, pp. 5434–5442, 2018.

[9] L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen,
G. Tang, M. Soltanolkotabi, and L. Waller, “Experimen-
tal robustness of fourier ptychography phase retrieval al-
gorithms,” Optics Express, vol. 23, no. 26, pp. 33 214–
33 240, 2015.

[10] J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient
positional misalignment correction method for fourier
ptychographic microscopy,” Biomedical Optics Express,
vol. 7, no. 4, pp. 1336–1350, 2016.

[11] A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei,
and B. Yao, “System calibration method for fourier pty-
chographic microscopy,” Journal of Biomedical Optics,
vol. 22, no. 9, pp. 1–11, 2017.

[12] Y. Zhu, M. Sun, P. Wu, Q. Mu, L. Xuan, D. Li, and
B. Wang, “Space-based correction method for led ar-
ray misalignment in fourier ptychographic microscopy,”
Optics Communications, vol. 514, 2022.

[13] Y. Chen, T. Xu, J. Zhang, J. Zhang, and J. Li, “Precise
and independent position correction strategy for fourier
ptychographic microscopy,” Optik, vol. 265, 2022.

[14] J. Zhang, X. Tao, L. Yang, R. Wu, P. Sun, C. Wang, and
Z. Zheng, “Forward imaging neural network with cor-
rection of positional misalignment for fourier ptycho-
graphic microscopy,” Optics Express, vol. 28, no. 16,
pp. 23 164–23 175, 2020.

[15] D. Yang, S. Zhang, C. Zheng, G. Zhou, L. Cao, Y. Hu,
and Q. Hao, “Fourier ptychography multi-parameter
neural network with composite physical priori optimiza-
tion,” Biomedical Optics Express, vol. 13, no. 5, pp.
2739–2753, 2022.

[16] J. R. Fienup, “Phase retrieval algorithms: a compari-
son,” Applied Optics, vol. 21, pp. 2758–2769, 1982.

[17] A. M. Maiden and J. M. Rodenburg, “An improved
ptychographical phase retrieval algorithm for diffractive
imaging,” Ultramicroscopy, vol. 109, no. 10, pp. 1256–
1262, 2009.

[18] J. R. Fienup and C. C. Wackerman, “Phase-retrieval
stagnation problems and solutions,” J. Opt. Soc. Am. A,
vol. 3, no. 11, pp. 1897–1907, 1986.

[19] M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial
transformer networks,” Advances in Neural Information
Processing Systems, vol. 28, 2015.

[20] E. Bostan, R. Heckel, M. Chen, M. Kellman, and
L. Waller, “Deep phase decoder: self-calibrating phase
microscopy with an untrained deep neural network,”
Optica, vol. 7, pp. 559–562, 2020.

[21] D. Fuoli, L. Van Gool, and R. Timofte, “Fourier space
losses for efficient perceptual image superresolution,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 2360–2369.

https://www.tensorflow.org/

	 Introduction
	 METHODS
	  The principle of FPM
	  Neural Network Model
	  Global LEDs position misalignment correction

	 EXPERIMENTS AND RESULTS
	 DISCUSSION AND CONCLUSION
	 ACKNOWLEDGMENTS
	 References

